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I. SEQUENTIAL GAME

In this annex, we show that our main �ndings hold when ISPs choose capacity investments before
setting their prices to end users and CPs. We �rst solve for the equilibrium of the sequential
game under the net neutrality regime, and then under the discriminatory regime. Finally, we
compare equilibrium investments in the two regimes.

I(i). Net neutrality

In the net neutrality regime, there is a single lane for Internet tra¢ c, and CPs pay no fee to the
ISPs. We study the following three-stage game:

1. The two ISPs choose their capacities, �NA and �
N
B .

2. The two ISPs set the subscription fees to the end users, pNA and p
N
B .

3. The CPs choose which ISP(s) to connect to (if any), and the end users choose which ISP
to subscribe to.

We proceed backwards to solve for the symmetric subgame perfect equilibrium.1

Stage 3: Content providers�and end users�decisions. This stage is the same as Stage 2 of our
baseline model. By solving for the cubic equation (10) of the paper, we can obtain an explicit
expression for the indi¤erent consumer, exN = exN �pNA ; pNB ; �NA ; �NB �. The number of end users of
ISP A and ISP B are then xNA = exN and xNB = 1 � exN , respectively. Note that exN is equal to
1=2 under symmetry, i.e., when pNA = pNB and �

N
A = �NB .

Stage 2: Subscription fees. At Stage 2, the ISPs set the subscription fees to the end users.
The maximization problem of ISP i = A;B is as follows

max
pNi

�Ni = pNi x
N
i � C

�
�Ni
�
,

1When we consider (out of equilibrium) asymmetric situations in the multi-stage games, expressions and com-
putations become complex. For this reason, we describe here the procedure we followed and the main �ndings,
but do not provide the full expressions. Of course we can provide them upon request in case there is interest in
fuller details.
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where xNi = xNi
�
pNA ; p

N
B ; �

N
A ; �

N
B

�
from Stage 3. From the �rst-order conditions,

@�Ni
@pNi

= xNi + p
N
i

@xNi
@pNi

= 0,

we obtain implicitly (i.e., using the implicit function theorem) an expression for the subscription
fees pNi

�
�NA ; �

N
B

�
.

Stage 1: Investment in capacity. At Stage 1, the two ISPs choose their investments in capacity.
The maximization problem of ISP i can be expressed as follows

max
�Ni

�Ni = pNi x
N
i � C

�
�Ni
�
,

where xNi = xNi
�
pNA ; p

N
B ; �

N
A ; �

N
B

�
is obtained explicitly from the third stage and pNi

�
�NA ; �

N
B

�
is

obtained implicitly from the second stage. Applying the envelope theorem, the �rst-order condi-
tion with respect to the investment in capacity is

@�Ni
@�Ni

= pNi

 
@xNi
@�Ni

+
@xNi
@pNj

@pNj

@�Ni

!
� C 0

�
�Ni
�
= 0.

The derivatives @xNi =@p
N
j and @x

N
i =@�

N
i are obtained by direct di¤erentiation of xNi (from

Stage 3) with respect to pNj and �Ni , respectively. Since we do not have an explicit solution
for the subscription fees pNi

�
�NA ; �

N
B

�
, we use the implicit function theorem and apply Cramer�s

rule to the system of �rst-order conditions with respect to subscription fees (Stage 2) in order to
determine the derivative @pNj =@�

N
i . Under symmetry, we �nd that

@pNj

@�Ni
=
4(d+ v)(�� 1)
3(2 + �)2

.

We can then replace for the expressions of the derivatives in the �rst-order condition with respect
to the investment in capacity (Stage 1), and by imposing symmetry, we obtain the symmetric
equilibrium level of investment in capacity in the sequential game,

�NS = (C
0)�1

�
(d+ v)(4 + 5�)

3(2 + �)2

�
.

I(ii). Discrimination

In the discriminatory regime, each ISP o¤ers a priority lane and a non-priority lane to CPs. The
CPs that opt for priority at ISP i pay a �xed fee fi, whereas the non-priority lane is o¤ered for
free. We modify our three-stage game accordingly:

1. The two ISPs choose their capacities, �DA and �
D
B .

2. The two ISPs set their subscription fees to the end users, pDA and p
D
B , as well as the fees for

their priority lanes, fA and fB.

3. The CPs choose which ISP(s) to connect to (if any) and whether to pay for priority, and
the end users choose which ISP to subscribe to.
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Stage 3: Content providers�and end users�decisions. This stage is the same as the second stage
of our baseline model. By solving for the cubic equation (19) of the paper, we obtain an ex-
plicit expression for the indi¤erent consumer, exD = exD �pNA ; pNB ; �NA ; �NB �, which is independent
of the priority fees. The number of users of ISP A and ISP B are then xDA = exD and xDB = 1�exD.
Stage 2: ISPs� pricing decisions. At Stage 2, the two ISPs choose simultaneously their sub-
scription and priority fees. The maximization problem of ISP i can be expressed as follows:

max
pDi ; fi

�Di = pDi x
D
i +

�
h
D
i � ehi� fi � C ��Di � ,

where xDi = xDi (p
D
A ; p

D
B ; �

D
A ; �

D
B ) from the third stage. The �rst-order conditions are

@�Di
@pDi

= xDi +

 
pDi +

@((h
D
i � ehi)fi)
@xDi

!
@xDi
@pDi

= 0,

@�Di
@fi

=
@((h

D
i � ehi)fi)
@fi

= 0.

Since xDi is independent of the priority fees, by solving for @�Di =@fi = 0 we can express the
equilibrium priority fee as a function of xDi :

fi =
axDi �(1 + x

D
i ��

q
1 + xDi �)

1 + xDi �
.

Replacing for the optimal fi�s into the �rst-order conditions @�Di =@p
D
i = 0, we obtain a system

of two equations with two unknowns that gives implicitly the subscription fees pDi
�
�DA ; �

D
B

�
.

Stage 1: Investment in capacity. At Stage 1, the two ISPs decide on their investments in capacity.
The maximization problem of ISP i is

max
�Di

�Di = pDi x
D
i +

�
h
D
i � ehi� fi � C ��Di � ,

where xDi = xDi (p
D
A ; p

D
B ; �

D
A ; �

D
B ) is obtained explicitly from the third stage and p

D
i

�
�DA ; �

D
B

�
is ob-

tained implicitly from the second stage. Applying the envelope theorem, the �rst-order condition
with respect to the investment in capacity, @�Di =@�

D
i = 0, becomes

pDi

 
@xDi
@�Di

+
@xDi
@pDj

@pDj

@�Di

!
+ fi

@(h
D
i � ehi)
@�Di

+
@
h
fi(h

D
i � ehi)i
@xDi

 
@xDi
@�Di

+
@xDi
@pDj

@pDj

@�Di

!
� C 0

�
�Di
�
= 0.

All derivatives are obtained by direct di¤erentiation of the relevant expressions, apart from
@pDj =@�

D
i , as do we do not have an explicit solution for the subscription fees p

D
i

�
�DA ; �

D
B

�
. We

use the implicit function theorem and apply the Cramer�s rule to the system of the �rst-order
conditions with respect to the subscription fees (where we have already plugged in the optimal
fi�s) in order to determine the derivative @pDj =@�

D
i . Under symmetry, we obtain

@pDj

@�Di
=

N
p
t(2 + �)2

h
3t(2 + �)3+2��Di

�
6 (d+ v) (2 + �) + a�

�
3
p
2 (2 + �)�8

��i ,
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where N = 4t3=2(2 + �)3((v + d)(� � 1) + a�) + 4
p
t�[16a�(v + d) � a2�2(14 + 3�) + 4(v +

d)2
�
�2 + �� 2

�
]�Di �2

p
2a�[8t

p
t(2 + �)+�(12t

p
t(2 + �)+14(v+d)

p
t(2 + �)�Di +�(6t

p
t(2 + �)+

�t
p
t(2 + �)+ (v+ d� 14a)

p
t(2 + �)�Di ))]. By replacing for the expression of the derivatives in

the �rst-order conditions with respect to the investment in capacity, and by imposing symmetry,
we obtain an equation that can be summarized as

L
�
�DS
�
= C 0

�
�DS
�
.

This expression gives the symmetric equilibrium level of investment in capacity in the sequential
move game. We omit the expression of L

�
�DS
�
here, due to its algebraic complexity.

I(iii). Net neutrality vs. discrimination

We can now compare the two alternative regimes and prove that the investment in broadband
capacity is higher under the discriminatory regime than under the net neutrality regime in this
alternative timing of the game. Since C 00 > 0, (C 0)�1 is an increasing function, and therefore, it
su¢ ces to prove that the di¤erence D � L

�
�DS
�
� (d + v)(4 + 5�)=

�
3(2 + �)2

�
is positive. We

�nd that for � < 14=9, D is increasing in �DS and that D
�
�DS = 0

�
� 0. Therefore, D is positive

for all � < 14=9. If � � 14=9, D is decreasing in �Di and lim
�Di !1

D � 0. Hence, D is positive for

all � � 14=9 and therefore D > 0 everywhere. This completes the general proof. We provide
below a numerical example for a = 1, t = 1, d = 1, v = 3 and � on the horizontal axis. One can
observe that �DS � �NS always holds.
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�NS : solid line, �
D
S : dashed line

a = 1; t = 1; d = 1; v = 3

II. FIXED ENTRY COST FOR CPs

In this annex, we show that our main �ndings hold when CPs incur a �xed cost to connect to an
ISP. The two-stage games for the net neutrality and discriminatory regimes are the same than
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in our baseline model. The only di¤erence is that CP h�s pro�ts are now given by

�Nh =

8<:
a�xNA

�
1� hwNA

�
+ a�xNB

�
1� hwNB

�
� 2K it connects to both ISPs

a�xNi
�
1� hwNi

�
�K if it connects only to ISP i

0 otherwise.

and

�Dh =

8>>>>>><>>>>>>:

a�xDA (1� hwPA)� fA + a�xDB (1� hwPB)� fB � 2K priority at both ISPs
a�xDi (1� hwPi )� fi + a�xDj (1� hwNPj )� 2K priority only at ISP i

a�xDA (1� hwNPA ) + a�xDB (1� hwNPB )� 2K if non-priority at both ISPs
a�xDi (1� hwPi )� fi �K priority at ISP i, no entry at ISP j
a�xDi (1� hwNPi )�K non-priority at ISP i, no entry at ISP j
0 otherwise,

under net neutrality and discrimination, respectively. The rest of our setting is unchanged. We
�rst solve for the equilibrium under net neutrality, and then under discrimination. Finally, we
compare equilibrium investments and entry in the two regimes.

II(i). Net neutrality
In this network regime, there is a single lane for Internet tra¢ c, the CPs pay no fee to the ISPs,
but CPs now incur a �xed entry cost K when they connect to an ISP. We proceed backwards to
solve for the symmetric subgame perfect equilibrium.

Stage 2: Content providers� and end users� decisions. At the second stage, each CP decides
whether to multi home, to single home, or to stay out of the market. A CP with congestion
sensitivity h connects to ISP i if and only if a�xNi

�
1� hwNi

�
�K � 0, that is, i¤ h � h

N
i , where

(1) h
N
i =�

N
i

a�xNi �K
�xNi

�
a+ a�xNi �K

� , for i = A;B.

Two con�icting e¤ects are at play here: a demand e¤ect and a congestion e¤ect. On the one
hand, a higher number of subscribers increases CPs�pro�ts, and hence, entry (demand e¤ect).
On the other hand, it increases congestion, which reduces entry (congestion e¤ect). We �nd that
the congestion e¤ect dominates the demand e¤ect if the �xed entry cost K is su¢ ciently low
(K � a

2 (2�xi+1�
p
4�xi + 1)) or high (K � a

2 (2�xi+1+
p
4�xi + 1)); in this case, the number

of CPs at ISP i decreases with the number of subscribers on this platform. Otherwise, if the entry
cost K takes intermediate values (K 2 (a2 (2�xi+1�

p
4�xi + 1);

a
2 (2�xi+1+

p
4�xi + 1))), the

demand e¤ect dominates the congestion e¤ect, and the number of CPs at ISP i increases with
the number of subscribers on this platform. Note however that we have also to take into account
the constraint that the level of entry by CPs should be positive in the symmetric equilibrium.
That is, from (1), it must be that K � a�xi. When xi is around 1=2, this condition becomes
K � a�=2 and we have a

2 (2�xi + 1�
p
4�xi + 1) < a�=2 < a

2 (2�xi + 1+
p
4�xi + 1). Therefore,

for xi � 1=2, the number of CPs at ISP i decreases with the number of subscribers on this
platform for low values of K (K � a

2 (2�xi+1�
p
4�xi + 1)), and increases with it otherwise. In

the rest of the analysis, we assume that K � a�=2. Note that if K = 0, the congestion e¤ect is
always dominant.

Simultaneously, at Stage 2, each consumer chooses whether to subscribe to ISP A or ISP B.
The indi¤erent consumer exN is given by
(2) R+ vh

N
A +

d

wNA
� pNA � texN = R+ vh

N
B +

d

wNB
� pNB � t

�
1� exN� .
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Replacing for h
N
A and h

N
B into (2), we �nd that the indi¤erent consumer is de�ned implicitly from

F = 0, where

F (exN ; pNA ; pNB ; �NA ; �NB ) �
�NB
�
v � d�

�
1� exN�� �a� �1� exN��K�

� (1� exN ) (a+ a� (1� exN )�K)
�
�NA
�
v � d�exN� �a�exN �K�
�exN (a+ a�exN �K) + d

�
�NB � �NA

�
� t(1� 2exN )� (pNB � pNA ),(3)

and, therefore, we have exN = exN (pNA ; pNB ; �NA ; �NB ). The number of end users of ISP A and ISP
B are then xNA = exN and xNB = 1� exN , respectively.
Stage 1: ISPs� decisions. At the �rst stage of the game, the two ISPs compete by choosing
an investment in capacity, and by setting a subscription fee to the end users. The maximization
problem of ISP i can be expressed as follows

max
pNi ; �

N
i

�Ni = pNi x
N
i � C

�
�Ni
�
,

where xNi = xNi
�
pNA ; p

N
B ; �

N
A ; �

N
B

�
. The two �rst-order conditions are

(4)
@�Ni
@pNi

= xNi + p
N
i

@xNi
@pNi

= 0,

and

(5)
@�Ni
@�Ni

= pNi
@xNi
@�Ni

� C 0
�
�Ni
�
= 0.

Following the same logic as in our baseline model, we obtain the following result.

Proposition 1 Under net neutrality, if the CPs incur a �xed cost K to connect to an ISP, in
the symmetric equilibrium, the capacity level, the subscription fee, the number of CPs and the
average level of congestion are given by:

�NK = (C 0)�1
�
a(d+ v)�� 2vK
�(a(2 + �)� 2K)

�
,

pNK = t+
4(�4vK(a�K + a�) + a2(d+ v)�2)�NK

(�(a(2 + �)� 2K)2 ,

h
N
K =

2 (a�� 2K)�NK
�(a(2 + �)� 2K) ,

wNK =
a(2 + �)� 2K

2a�NK
.

Proof: Since we do not have an explicit solution for market shares xNi , we apply the Implicit
Function Theorem to equation (3) in order to determine the derivatives @xNi =@p

N
i and @x

N
i =@�

N
i ,

which are then used in the FOCs of Stage 1. We calculate

@xNA
@pNA

= �@F=@p
N
A

@F=@exN and
@xNA
@�NA

= �@F=@�
N
A

@F=@exN .
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By replacing for these derivatives in the �rst-order conditions (4) and (5), and by imposing sym-
metry, we obtain the symmetric equilibrium levels of investment in capacity and the subscription
fees, as reported in the Proposition.

Remark that if we set K = 0, we obtain the same equilibrium expressions as in our baseline
model. In addition, note that K should not be too high (speci�cally, not higher than a�=2) to
obtain a positive level of entry by CPs.

Observe also that, whenever K > 0, h
N
K strictly increases with the advertising rate a. In

words, the higher the advertising rate, the higher the number of CPs that enter the market.

II(ii). Discrimination

In the discriminatory regime, each ISP o¤ers a priority lane and a non-priority lane to CPs. The
CPs that opt for priority at ISP i pay a �xed fee fi, whereas the non-priority lane is o¤ered for
free. In addition, the CPs incur a �xed cost K whenever they connect to an ISP (whatever the
lane).

Stage 2: Content providers� and end users� decisions. At the second stage, each CP decides
whether to multi home, to single home or to stay out of the market and, if it enters the market,
whether to pay for priority. The CPs that are the most congestion-sensitive opt for the priority
lane. A CP of type h connects to the priority lane at ISP i if h � h

D
i , where h

D
i solves

(6) a�xDi (1� h
D
i w

P
i )� fi �K = 0.

Furthermore, the CP of type ehi which is indi¤erent between the priority lane and the non-priority
lane at ISP i is de�ned by

(7) a�xDi (1� ehiwPi )� fi �K = a�xDi (1� ehiwNPi )�K:

From (6) and (7), the total number of CPs that pay for priority at ISP i is maxfhDi � ehi; 0g.
Equation (7) implies thatfi = a�xDi

ehi �wNPi � wPi
�
, and replacing for this expression into (6),

we obtain
a�xDi

h
1�

��
h
D
i � ehi�wPi + ehiwNPi �i

�K = 0.

By dividing the latter expression by h
D
i and using w

D
i , we �nd that the type of the marginal CP

that enters at ISP i is

(8) h
D
i = �Di

a�xDi �K
�xDi

�
a+ a�xDi �K

� .
The type of the marginal CP h

D
i is independent of the priority fee and takes an expression similar

to the total number of CPs at ISP i in the net neutrality regime (which is given by (1)). As
in the net neutrality regime, the demand and congestion e¤ects are at play here, and the same
reasoning applies to determine which e¤ect dominates, according to the value of K. In addition,
we have

(9) ehi = a�Di fi

�xDi (a+ a�x
D
i �K)(a�xDi � fi �K)

.
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Simultaneously, at stage 2, each consumer chooses whether to subscribe to ISP A or ISP B.
The indi¤erent consumer exD is given by
(10) R+ vh

D
A +

d

wDA
� pDA � texD = R+ vh

D
B +

d

wDB
� pDB � t

�
1� exD� .

By replacing for h
D
A and h

D
B into (10), the indi¤erent consumer satis�es F

D = 0, where

FD �
�DB
�
v � d�

�
1� exD�� �a� �1� exD��K�

� (1� exD) (a+ a� (1� exD)�K) �(11)

�DA
�
v � d�exD� �a�exD �K�
�exD (a+ a�exD �K) + d

�
�DB � �DA

�
� t(1� 2exD)� (pDB � pDA ),

and, therefore, we have exD = exD(pDA ; pDB ; �DA ; �DB ). The number of users of ISP A and ISP B are
then xDA = exD and xDB = 1� exD. Note that equation (11) for the discriminatory regime is similar
to equation (3) for the net neutrality regime, and that exD is independent of the priority fees.
Stage 1: ISPs� decisions. At the �rst stage, the two ISPs choose simultaneously their capac-
ities, subscription fees and priority fees. The maximization problem of ISP i can be expressed as
follows

max
pDi ; �

D
i ; fi

�Di = pDi x
D
i +

�
h
D
i � ehi� fi � C ��Di � ,

where xDi = xDi (p
D
A ; p

D
B ; �

D
A ; �

D
B ). The corresponding �rst-order conditions are

@�Di
@pDi

= xDi +

 
pDi +

@((h
D
i � ehi)fi)
@xDi

!
@xDi
@pDi

= 0,(12)

@�Di
@�Di

=

 
pDi +

@((h
D
i � ehi)fi)
@xDi

!
@xDi
@�Di

� C 0
�
�Di
�
+
@((h

D
i � ehi)fi)
@�Di

= 0,(13)

@�Di
@fi

=
@((h

D
i � ehi)fi)
@fi

= 0.(14)

We obtain the following result.

Proposition 2 Under discrimination, if the CPs incur a �xed cost K to connect at an ISP, in the
symmetric equilibrium, the capacity level, the priority fee, the subscription fee, the number of
CPs and the levels of congestion are given by:

�DK = (C
0)�1

0@ a(d+ v)�� 2vK
�(a(2 + �)� 2K) +

(a�� 2K)
�
a(4 + �)� 2

�
K +

p
2
p
a(a(2 + �)� 2K)

��
�(a(2 + �)� 2K)

1A ,

fK =
(a�� 2K)

�
a(2 + �)� 2K �

p
2
p
a(a(2 + �)� 2K)

�
2a(2 + �)� 4K ,
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pDK = t+
4(�4vK(a�K + a�) + a2(d+ v)�2)�DK

�(a(2 + �)� 2K)2

�
2�DK

�
2K(4K2�4aK(3 + �) + a2(8 + 8�+ �2))�2a3�2

�
�(a(2 + �)� 2K)2

�2�
D
K

p
2
p
a(a(2 + �)� 2K)(8K2+a2�2�2aK(4 + 3�))

�(a(2 + �)� 2K)2
,

h
D
K =

2 (a�� 2K)�DK
� (a (2 + �)� 2K) ;

ehK = 2
p
2
p
a
�
a (2 + �)� 2K �

p
2
p
a (a (�+ 2)� 2K)

�
�DK

� (a (�+ 2)� 2K)
3
2

,

wPK =

q
�+ 2� 2K

ap
2�DK

, wNPK =

p
2
�
�+ 2� 2K

a

� 3
2

4�DK
, wDK =

a (�+ 2)� 2K
2a�DK

.

Proof: We proceed as in the net neutrality regime, by applying the Implicit Function Theorem
to (11) in order to determine the derivatives @xDi =@p

D
i and @x

D
i =@�

D
i . We calculate

@xDA
@pDA

= �@F
D=@pDA

@FD=@exD and
@xDA
@�DA

= �@F
D=@�DA

@FD=@exD .
By replacing for these derivatives in the three �rst-order conditions, and by imposing symmetry,
we obtain the symmetric equilibrium levels of investment in capacity, the subscription fees and
the priority fees, as reported in the Proposition.

Again, if K = 0, we obtain the same equilibrium expressions as in our baseline model.

II(iii). Net neutrality vs. discrimination

We can now compare the equilibrium in the two regimes, and prove that the investment in
broadband capacity and CPs�entry are higher under the discriminatory regime than under the
net neutrality regime. Since C 00 > 0, (C 0)�1 is an increasing function. Since, furthermore, the
parenthesis in the right hand side of �DK in Proposition 2 is higher than the parenthesis in the
right hand side of �NK in Proposition 1, we have �DK � �NK .

Indeed, the di¤erence between the terms in parenthesis in the RHS of �DK and �
N
K is equal to

(a�� 2K)
� [a(2 + �)� 2K]

h
a(4 + �)� 2

�
K +

p
2
p
a2(2 + �)� 2Ka

�i
.

The �rst term of this expression is positive as we have assumed that a� > 2K. Let  (K) =

a(4 + �)� 2
�
K +

p
2
p
a2(2 + �)� 2Ka

�
. We �nd that

 0(K) = �2
"
1�

p
2ap

a2(2 + �)� 2Ka

#
< 0,

as a� > 2K implies that the term into brackets is positive. Since  (K) is a decreasing function,
its minimum is reached at the upper bound for K, i.e., K = a�=2. Since  (a�=2) = 0,2 for all

K 2 [0; a�=2], we have  (K) � 0, which proves that �DK � �NK . In turn, it implies that h
D
K � h

N
K .

2Note also that  (0) > 0 for all � > 0.
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III. UNIFORM ACCESS FEE

In this annex, we solve for the equilibrium when ISPs o¤er a single tra¢ c lane, but can charge
a uniform fee to access it. We use the superscript "U" to designate this scenario.

Stage 2: Content providers� and end users� decisions. Since there is a single tra¢ c lane, the
waiting times are determined in a similar way as in the net neutrality regime. Therefore, we have

(15) wi =
1

�i � �xUi h
U
i

.

Let fi denote the termination fee charged by ISP i to CPs. At the second stage, each CP decides
whether to multi home, to single home or to stay out of the market. CP h�s pro�t is given by

�Uh =

8<:
a�xUA

�
1� hwUA

�
� fA + a�xUB

�
1� hwUB

�
� fB it connects to both ISPs

a�xUi
�
1� hwUi

�
� fi if it connects only to ISP i

0 otherwise.

The CP of type h connects to ISP i i¤ h � h
U
i , where h

U
i solves a�x

U
i (1�h

U
i w

U
i )� fi = 0. Using

(15), we �nd that

h
U
i = �Ui

a�xUi � fi
�xUi

�
a+ a�xUi � fi

� .
Simultaneously, at Stage 2, each consumer chooses whether to subscribe to ISP A or ISP B.

The indi¤erent consumer exU is given by
(16) R+ vh

U
A +

d

wUA
� pUA � texU = R+ vh

U
B +

d

wUB
� pUB � t

�
1� exU� .

By replacing for h
U
A and h

U
B into (16), the indi¤erent consumer exU satis�es FU = 0, where

FU �
�UB
�
v � d�

�
1� exU�� �a� �1� exU�� fB�

� (1� exU ) (a+ a� (1� exU )� fB)
�
�UA
�
v � d�exU� �a�exU � fA�
�exU (a+ a�exU � fA) + d

�
�UB � �UA

�
� t(1� 2exU )� (pUB � pUA),

and, therefore, we have exU = exU (pUA; pUB; �UA; �UB; fA; fB). The number of users of ISP A and ISP
B are then xUA = exU and xUB = 1 � exU , respectively. Note that exU depends on the (uniform)
termination fees.

Stage 1: ISPs� decisions. At the �rst stage, the two ISPs choose simultaneously their capac-
ities, subscription fees and uniform termination fees. The maximization problem of ISP i can be
expressed as follows

max
pUi ; �

U
i ; fi

�Ui = pUi x
U
i + h

U
i fi � C

�
�Ui
�
,

where xUi = xUi (p
U
A; p

U
B; �

U
A; �

U
B; fA; fB). The three �rst-order conditions for pro�t maximization
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are

@�Ui
@pUi

= xUi +

 
pUi + fi

@h
U
i

@xUi

!
@xUi
@pUi

= 0,(17)

@�Ui
@�Ui

=

 
pUi + fi

@h
U
i

@xUi

!
@xUi
@�Ui

� C 0
�
�Ui
�
+ fi

@h
U
i

@�Ui
= 0,(18)

@�Ui
@fi

=

 
pUi + fi

@h
U
i

@xUi

!
@xUi
@fi

+ h
U
i + fi

@h
U
i

@fi
= 0.(19)

We begin by solving for pUi in the �rst-order condition (17), which gives p
U
i as a function of

fi and �Ui . We then replace for this expression of p
U
i into the �rst-order condition (18), and solve

for �Ui . We obtain that

�Ui (fi) =
�a (d+ v + 2fi)� 2fi (v + 2fi)

� [(2 + �) a� 2fi]
.

Note that �Ui (0) = (d+v)= (2 + �) � �N . Furthermore, �Ui (fi) increases with fi (as @�
U
i =@fi > 0

at a = 0 and @�Ui =@fi increases with a). Therefore, �
U
i � �N , with a strict inequality if fi > 0.

In other words, capacity investments are higher under this alternative net neutrality regime than
under the net neutrality regime with no termination fee.

Finally, we replace for �Ui (fi) into the last �rst-order condition, (19), and solve for the optimal
fi. This FOC has four roots, but only one satis�es the second-order conditions. In the symmetric
equilibrium with the quadratic investment cost function, we �nally obtain that

�U =
v + a (4 + �)� 2

p
a (2v � d�+ 2a (2 + �))
�

.

The following �gure compares the equilibrium capacity investments for quadratic investment
costs under net neutrality (�N ), discrimination (�D) and uniform pricing (�U ), as a function of �,
for the following parameter values: a = 1, t = 1, v = 3, d = 1. As one can see, capacity investment
under uniform pricing is always (at least weakly) higher compared to the net neutrality regime.
However, it can be either higher (for low or high values of �) or lower (for intermediate values of
�) than capacity investment under discrimination.

�N : thick black line, �D: red dashed line, �U : blue solid line
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