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I. SEQUENTIAL GAME

In this annex, we show that our main findings hold when ISPs choose capacity investments before
setting their prices to end users and CPs. We first solve for the equilibrium of the sequential
game under the net neutrality regime, and then under the discriminatory regime. Finally, we
compare equilibrium investments in the two regimes.

I(i). Net neutrality

In the net neutrality regime, there is a single lane for Internet traffic, and CPs pay no fee to the
ISPs. We study the following three-stage game:

1. The two ISPs choose their capacities, /LJX and ug .
2. The two ISPs set the subscription fees to the end users, p% and pg .

3. The CPs choose which ISP(s) to connect to (if any), and the end users choose which ISP
to subscribe to.

We proceed backwards to solve for the symmetric subgame perfect equilibrium.’

Stage 3: Content providers’ and end users’ decisions. This stage is the same as Stage 2 of our
baseline model. By solving for the cubic equation (10) of the paper, we can obtain an explicit
expression for the indifferent consumer, zV = (p% , pg , u% , ug ) The number of end users of
ISP A and ISP B are then z% = 7V and mB =1 —zV, respectively. Note that z" is equal to

1/2 under symmetry, i.e., when pg = pg and M]X = ,ug .
Stage 2: Subscription fees. At Stage 2, the ISPs set the subscription fees to the end users.

The maximization problem of ISP ¢ = A, B is as follows
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'When we consider (out of equilibrium) asymmetric situations in the multi-stage games, expressions and com-
putations become complex. For this reason, we describe here the procedure we followed and the main findings,
but do not provide the full expressions. Of course we can provide them upon request in case there is interest in
fuller details.
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where zl¥ = ¥ (p% ) pg, u% ) /HE\; ) from Stage 3. From the first-order conditions,
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we obtain implicitly (i.e., using the implicit function theorem) an expression for the subscription
I N (,N N
ees p;' (4, 133)-

Stage 1: Investment in capacity. At Stage 1, the two ISPs choose their investments in capacity.
The maximization problem of ISP ¢ can be expressed as follows

maxlly = pa — O (u)
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where fo = a:fv (p]X , pg , u]X , ug ) is obtained explicitly from the third stage and pfv (u% , ug ) is

obtained implicitly from the second stage. Applying the envelope theorem, the first-order condi-
tion with respect to the investment in capacity is

oY _ v (0x)  oxl apy\ () =0
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The derivatives 9zl / 8p§v and 0z /0ud are obtained by direct differentiation of z¥ (from
Stage 3) with respect to pj.v and ,ufv , respectively. Since we do not have an explicit solution

for the subscription fees pfv (,u]X , ug ), we use the implicit function theorem and apply Cramer’s
rule to the system of first-order conditions with respect to subscription fees (Stage 2) in order to
determine the derivative (9p§v / a,uZN . Under symmetry, we find that

opY  4(d+v)(\—1)
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We can then replace for the expressions of the derivatives in the first-order condition with respect
to the investment in capacity (Stage 1), and by imposing symmetry, we obtain the symmetric
equilibrium level of investment in capacity in the sequential game,
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I(ii). Discrimination
In the discriminatory regime, each ISP offers a priority lane and a non-priority lane to CPs. The

CPs that opt for priority at ISP ¢ pay a fixed fee f;, whereas the non-priority lane is offered for
free. We modify our three-stage game accordingly:

1. The two ISPs choose their capacities, ug and ug.

2. The two ISPs set their subscription fees to the end users, pg and pg, as well as the fees for
their priority lanes, f4 and fp.

3. The CPs choose which ISP(s) to connect to (if any) and whether to pay for priority, and
the end users choose which ISP to subscribe to.



Stage 3: Content providers’ and end users’ decisions. This stage is the same as the second stage
of our baseline model. By solving for the cubic equation (19) of the paper, we obtain an ex-
plicit expression for the indifferent consumer, z° = zP (pg ,pg , ug , ,ug ), which is independent
of the priority fees. The number of users of ISP A and ISP B are then :cg =z and xg =1-zP.

Stage 2: ISPs’ pricing decisions. At Stage 2, the two ISPs choose simultaneously their sub-
scription and priority fees. The maximization problem of ISP ¢ can be expressed as follows:

max TP = pPal + (B = hi) fi = C (uP),

pi:fz

where 2P = P (pB, pB, 18, uB) from the third stage. The first-order conditions are
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Since P is independent of the priority fees, by solving for OIIP/0f; = 0 we can express the
equilibrium priority fee as a function of xiD :

azP A1+ 2zPX — /14 2PN)
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fi =

Replacing for the optimal f;’s into the first-order conditions 9117 /dpP = 0, we obtain a system
of two equations with two unknowns that gives implicitly the subscription fees piD (,ug , ug )

Stage 1: Investment in capacity. At Stage 1, the two ISPs decide on their investments in capacity.
The maximization problem of ISP 7 is

maslP = pPaf 4+ (B ~Ti) fi = O (uP)

where xiD = :c? (pg , pg , ,U,ZA? , ug ) is obtained explicitly from the third stage and p? (ug , ,ug ) is ob-

tained implicitly from the second stage. Applying the envelope theorem, the first-order condition
with respect to the investment in capacity, GHlD / 8MZD = 0, becomes
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All derivatives are obtained by direct differentiation of the relevant expressions, apart from
aij / 3,uiD , as do we do not have an explicit solution for the subscription fees pZD (,ug , ug). We
use the implicit function theorem and apply the Cramer’s rule to the system of the first-order
conditions with respect to the subscription fees (where we have already plugged in the optimal
fi’s) in order to determine the derivative Bpf / 8,ulD . Under symmetry, we obtain
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where N = 4t3/2(2 + N3 ((v + d)(A — 1) + a)) + 4VEAN[16a\(v + d) — a®X2(14 + 3)) + 4(v +
d)? (A? + X = 2)|uP —2v/2aA[8t\/H(2 + \)+A(12t/t(2 + N)+14(v+d) /(2 + NP +A(6t/t(2 + N)+
MA/EH(2 + A) + (v+d—14a)/t(2 + M) pP))]. By replacing for the expression of the derivatives in
the first-order conditions with respect to the investment in capacity, and by imposing symmetry,

we obtain an equation that can be summarized as

L(us) =C" (ns)-

This expression gives the symmetric equilibrium level of investment in capacity in the sequential
move game. We omit the expression of L (,ug ) here, due to its algebraic complexity.

I(iii). Net neutrality vs. discrimination

We can now compare the two alternative regimes and prove that the investment in broadband
capacity is higher under the discriminatory regime than under the net neutrality regime in this
alternative timing of the game. Since C” > 0, (C')~! is an increasing function, and therefore, it
suffices to prove that the difference D = L (uf) — (d + v)(4 + 5X)/ [3(2 + A)?] is positive. We
find that for A < 14/9, D is increasing in ug and that D (ug = 0) > 0. Therefore, D is positive
for all A < 14/9. If A > 14/9, D is decreasing in /%D and })im D > 0. Hence, D is positive for

pym —00
all A > 14/9 and therefore D > 0 everywhere. This completes the general proof. We provide
below a numerical example fora =1,¢ =1, d =1, v = 3 and A on the horizontal axis. One can
observe that /L? > ufgv always holds.

ué\] : solid line, ué) : dashed line
a=1t=1,d=1v=3

II. FIXED ENTRY COST FOR CPs

In this annex, we show that our main findings hold when CPs incur a fixed cost to connect to an
ISP. The two-stage games for the net neutrality and discriminatory regimes are the same than
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in our baseline model. The only difference is that CP h’s profits are now given by

a)\asg (1 — hwg) + aA:pg (1 — hwg) — 2K it connects to both ISPs

my =< axal (1-hw)) - K if it connects only to ISP i
0 otherwise.

and
arzB (1 — hwk) — fa + arzB(1 — hwk) — fp — 2K priority at both ISPs
arzP (1 — hwP) — fi + a)\:z:?(l — hijP) — 2K priority only at ISP i

b — arzB (1 — hwl}?) + aAzB (1 — hwlT) — 2K if non-priority at both ISPs

h = a)\xZD(l —hwf) - fi—- K priority at ISP ¢, no entry at ISP j

arzP (1 — hwlN?) — K non-priority at ISP 7, no entry at ISP j
0 otherwise,

under net neutrality and discrimination, respectively. The rest of our setting is unchanged. We
first solve for the equilibrium under net neutrality, and then under discrimination. Finally, we
compare equilibrium investments and entry in the two regimes.

I1(i). Net neutrality

In this network regime, there is a single lane for Internet traffic, the CPs pay no fee to the ISPs,
but CPs now incur a fixed entry cost K when they connect to an ISP. We proceed backwards to
solve for the symmetric subgame perfect equilibrium.

Stage 2: Content providers’ and end users’ decisions. At the second stage, each CP decides
whether to multi home, to single home, or to stay out of the market. A CP with congestion

sensitivity h connects to ISP ¢ if and only if a)\xf-v (1 — thN) — K >0, that is, iff h < Efv, where

=N arzly — K
(1) ::U’zN N N
Azl (a+arzd — K)

Two conflicting effects are at play here: a demand effect and a congestion effect. On the one
hand, a higher number of subscribers increases CPs’ profits, and hence, entry (demand effect).
On the other hand, it increases congestion, which reduces entry (congestion effect). We find that
the congestion effect dominates the demand effect if the fixed entry cost K is sufficiently low
(K < 8(2A\z; +1—+/4Xz; + 1)) or high (K > §(2Az; + 1+ v/4Ax; 4 1)); in this case, the number
of CPs at ISP ¢ decreases with the number of subscribers on this platform. Otherwise, if the entry
cost K takes intermediate values (K € (§(2A\z; + 1 — V4 z; + 1), §(2Az; + 1+ V4Az; + 1)), the
demand effect dominates the congestion effect, and the number of CPs at ISP ¢ increases with
the number of subscribers on this platform. Note however that we have also to take into account
the constraint that the level of entry by CPs should be positive in the symmetric equilibrium.
That is, from (1), it must be that K < aAzx;. When z; is around 1/2, this condition becomes
K < a)X/2 and we have §(2Az; +1 — v4Az; + 1) < a)/2 < §(2Az; + 1+ /4 z; + 1). Therefore,
for x; ~ 1/2, the number of CPs at ISP i decreases w1th the number of subscribers on this
platform for low values of K (K < §(2Az; +1 — v/4Ax; + 1)), and increases with it otherwise. In
the rest of the analysis, we assume that K < a\/2. Note that if K = 0, the congestion effect is
always dominant.

Simultaneously, at Stage 2, each consumer chooses whether to subscribe to ISP A or ISP B.
The indifferent consumer z is given by

S

,fori = A, B.

— d - - d -
(2) R+vh]X+—N—p%—tmN:R+vhg+—N—pg—t(1—xN).
Wa Wp



Replacing for E]X and Eg into (2), we find that the indifferent consumer is defined implicitly from
F =0, where

i (0 —dr(1—7V)) (ar (1 - 7) — K)
A1-2N)(a+ar(1—-2N) - K)
ply (v - d)\fN) (a)\:fN — K)

A2V (a+aXiN - K)

F@EN, N pR il i) =
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and, therefore, we have zV = N (p¥, p¥, ulY, u¥). The number of end users of ISP A and ISP
B are then m% =zN and xg =1 -2V, respectively.

Stage 1: ISPs’ decisions. At the first stage of the game, the two ISPs compete by choosing
an investment in capacity, and by setting a subscription fee to the end users. The maximization
problem of ISP ¢ can be expressed as follows

max 15 = pj'a; — C (4;")

AT
where :Efv = va (p% , pg, [LJX , ug ) The two first-order conditions are
oty oxN
D; P;
and

i NZT o (N = 0.
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Following the same logic as in our baseline model, we obtain the following result.

Proposition 1 Under net neutrality, if the CPs incur a fixed cost K to connect to an ISP, in
the symmetric equilibrium, the capacity level, the subscription fee, the number of CPs and the
average level of congestion are given by:

no1 [ a(d+ )N — 20K
pi = (@) <>\(a(2—|—)\)—2K)>’
4(—4vK(a — K + aX) + a®(d + v)\?)ul

N
= 1
P + Na(2 + A) - 2K)? !
N 2 (a\ — 2K)
K7 XNa(2+)) - 2K)
Qb

Proof: Since we do not have an explicit solution for market shares va , we apply the Implicit

Function Theorem to equation (3) in order to determine the derivatives dz.¥ /OpY and 9zl Jouly,
which are then used in the FOCs of Stage 1. We calculate

o) __orjopY . 0xN  OF/ou
opl ~  OF/ozN opN~ OFjoEN



By replacing for these derivatives in the first-order conditions (4) and (5), and by imposing sym-
metry, we obtain the symmetric equilibrium levels of investment in capacity and the subscription
fees, as reported in the Proposition.

Remark that if we set K = 0, we obtain the same equilibrium expressions as in our baseline
model. In addition, note that K should not be too high (specifically, not higher than a\/2) to
obtain a positive level of entry by CPs.

Observe also that, whenever K > 0, Eﬁ strictly increases with the advertising rate a. In
words, the higher the advertising rate, the higher the number of CPs that enter the market.

I1(ii). Discrimination

In the discriminatory regime, each ISP offers a priority lane and a non-priority lane to CPs. The
CPs that opt for priority at ISP ¢ pay a fixed fee f;, whereas the non-priority lane is offered for
free. In addition, the CPs incur a fixed cost K whenever they connect to an ISP (whatever the
lane).

Stage 2: Content providers’ and end users’ decisions. At the second stage, each CP decides
whether to multi home, to single home or to stay out of the market and, if it enters the market,
whether to pay for priority. The CPs that are the most congestion-sensitive opt for the priority

lane. A CP of type h connects to the priority lane at ISP 7 if h < EZD , where EL-D solves
(6) a/\xzp(l—ﬁlpwip)—fi—K:O.

Furthermore, the CP of type ﬁz which is indifferent between the priority lane and the non-priority
lane at ISP 7 is defined by

(7) areP (1 —haw!) = fi = K = adaP (1 = haw}") - K.

From (6) and (7), the total number of CPs that pay for priority at ISP i is max{ﬁzp — hy, 0}
Equation (7) implies thatf; = adzP”h; (wN" — w!), and replacing for this expression into (6),

we obtain - N

arz? {1 — ((hZ — hi) wl +hiszP)} —K=0.
By dividing the latter expression by Ezp and using wiD , we find that the type of the marginal CP
that enters at ISP i is

—D D G)\LUP - K

® CT P s el — K

The type of the marginal CP Elp is independent of the priority fee and takes an expression similar
to the total number of CPs at ISP 4 in the net neutrality regime (which is given by (1)). As
in the net neutrality regime, the demand and congestion effects are at play here, and the same
reasoning applies to determine which effect dominates, according to the value of K. In addition,
we have

~ D r.
) = _ ap fi _ .
AP (a+ adzy — K)(adzy — fi — K)



Simultaneously, at stage 2, each consumer chooses whether to subscribe to ISP A or ISP B.
The indifferent consumer z° is given by

— d ~ - d ~
(10) R—i—vhg—F—D—pg—ta@D:R+vhg+—D—pg—t(1—xD).
Wa Wp

By replacing for Eg and Eg into (10), the indifferent consumer satisfies F” = 0, where
B (0= dA (1 - 72) (e (1- ) — K)
A1 -2P)(a+aX(1-2P) - K)

ul (v — dAED) (a)\fD — K)
AZP (a + aX\zP — K)

(11) FP =

+d(up —ng) —t(1—227) — (b5 — p3).
D =zPpR, pE, uf, uE). The number of users of ISP A and ISP B are
then 5 = 7P and 22 = 1 - 7P, Note that equation (11) for the discriminatory regime is similar
to equation (3) for the net neutrality regime, and that " is independent of the priority fees.

and, therefore, we have x

Stage 1: ISPs’ decisions. At the first stage, the two ISPs choose simultaneously their capac-
ities, subscription fees and priority fees. The maximization problem of ISP ¢ can be expressed as
follows

max HD_pZ:L‘ —I—( )fz— ( ),
PP, ul, fi

where 2P = zP (pf‘) ,pB B uh ey B). The corresponding first-order conditions are

o p 0 —h)f) 0xP _
(12) W = x;y + (pi + 835? 8pzD =0,
onP (0 =) i) , O((hy —hi)fi) _
(13) o0 = <1 + wp )31% = C" (u) + T—O,
ol Ok —ha)fi) _
T A

We obtain the following result.

Proposition 2 Under discrimination, if the CPs incur a fixed cost K to connect at an ISP, in the
symmetric equilibrium, the capacity level, the priority fee, the subscription fee, the number of
CPs and the levels of congestion are given by:

a(d + )\ — 20K (ak—2K)< (4+A)—2(K+f\/a 2+)\)—2K)))
Na(2+A) —2K) a2+ A) — 2K) |

pg = (")

(aA—QK)( 2+ ) — 2K — 2 /a(a(2 + \) —2K)>

Jr = 2a(2 + \) — 4K ’




b AWK (@ — K +a)) + +a?(d + )Nl
AMa(2+ \) — 2K)?
24D (2K(4K2—4aK(3 £+ a®(8 4+ 8\ + >\2))—2a3)\2>
- Aa(2 + \) — 2K)?
2uRV2y/a(a(2 4+ X) — 2K)(8K*+a*A\*—2aK (4 + 3)))

)

|~

Ma(2 + \) — 2K)?
o 2 -2K)pR 2v2v/a (a(2+2) - 2K - V3/a(a(h +2) - 2K) ) 4
= y K = ,
B X2+ ) - 2K) Aa (M +2) - 2K)?
3
P m NP ﬂ(k+2—%)2 p a(A+2)-2K
Wk =" 5,0 WK T D WK = o5
\/ZUK dpg 2apy

Proof: We proceed as in the net neutrality regime, by applying the Implicit Function Theorem
to (11) in order to determine the derivatives 9z /0pP and dzP /ouP. We calculate
oxh OFP Joph and oxh OFP Joul
— — 11 — — .
oph OFP /ozP ouly OFP /ozP

By replacing for these derivatives in the three first-order conditions, and by imposing symmetry,
we obtain the symmetric equilibrium levels of investment in capacity, the subscription fees and
the priority fees, as reported in the Proposition.

Again, if K =0, we obtain the same equilibrium expressions as in our baseline model.

I1(iii). Net neutrality vs. discrimination
We can now compare the equilibrium in the two regimes, and prove that the investment in
broadband capacity and CPs’ entry are higher under the discriminatory regime than under the
net neutrality regime. Since C” > 0, (C’)~! is an increasing function. Since, furthermore, the
parenthesis in the right hand side of ,ug in Proposition 2 is higher than the parenthesis in the
right hand side of u% in Proposition 1, we have ug > u%.

Indeed, the difference between the terms in parenthesis in the RHS of ,u% and u% is equal to

(a\ —2K)
AMa(2 + N) — 2K]
The first term of this expression is positive as we have assumed that aA > 2K. Let ¢(K) =
a4+ ) —2 (K +v2/a2(2 + \) — 2Ka>. We find that

[a(4+ A)—2 (K +V2V/a2(2 + \) — QKaH :

V2a
VaZ2+ ) — 2Ka] <0

W (K) = 2 [1 -

as aA > 2K implies that the term into brackets is positive. Since 9(K) is a decreasing function,
its minimum is reached at the upper bound for K, i.e., K = a)\/2. Since v¥(a)/2) = 0,2 for all

K €[0,a)\/2], we have 1(K) > 0, which proves that p£ > p. In turn, it implies that Eﬁ > E%.

*Note also that 1(0) > 0 for all A > 0.



III. UNIFORM ACCESS FEE

In this annex, we solve for the equilibrium when ISPs offer a single traffic lane, but can charge
a uniform fee to access it. We use the superscript "U" to designate this scenario.

Stage 2: Content providers’ and end users’ decisions. Since there is a single traffic lane, the
waiting times are determined in a similar way as in the net neutrality regime. Therefore, we have

1

(15) w; = ——————.
Hi — Aw?h?

Let f; denote the termination fee charged by ISP i to CPs. At the second stage, each CP decides
whether to multi home, to single home or to stay out of the market. CP h’s profit is given by

a)\a:% (1 — hwg) — fa+ a)\x% (1 — hwg) — fB it connects to both ISPs
7 =< axaVl (1-hwY) - fi if it connects only to ISP 7
0 otherwise.

The CP of type h connects to ISP ¢ iff h < EZU, where E? solves Az (1 — El[-]wlU) — fi = 0. Using
(15), we find that
L et N
Al (a+ arz¥ — f;)

Simultaneously, at Stage 2, each consumer chooses whether to subscribe to ISP A or ISP B.

The indifferent consumer zV is given by
U d U_ =0 U d U ~U
(16) R+why+ — —pa — 13 = R+vhg+ — —pp—t(1-27).
Wa Wp

By replacing for EZ and Eg into (16), the indifferent consumer zV satisfies FU = 0, where
1 (v—dr (1=2Y)) (aX (1 —2Y) — fB)
A(L=2Y)(a+aX(1—-2Y) - fp)

U ~U ~U
7MA(“_d/\x)(a)‘x _fA) U _ U\ _ 41 _oxUy _ (U _ U
U (a1 adil — ) +d (pp — pa) — (1 —22%) — (pp — pa);

FYV =

and, therefore, we have 7V = fU(p%,p%, u%, u%, fa, fB). The number of users of ISP A and ISP
B are then m% U respectively. Note that #U depends on the (uniform)

termination fees.

szandxgzlfﬁf

Stage 1: ISPs’ decisions. At the first stage, the two ISPs choose simultaneously their capac-
ities, subscription fees and uniform termination fees. The maximization problem of ISP ¢ can be
expressed as follows

U
b f_HlU =piay +hi fi=C (i),

where z¥ = 2V (pY, p4, u¥, 1Y, fa, fB). The three first-order conditions for profit maximization
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18 o= Uy fi—— L (hY i— =0,
(18) ol (pl +f ax?> ol (ki) + f onl
onY v L OR\ 0V v ORY

We begin by solving for p! in the first-order condition (17), which gives p{ as a function of
fi and ugj . We then replace for this expression of pZU into the first-order condition (18), and solve
for u¥. We obtain that

Uy _)\a(d+v+2f1)—2f1(v+2fl)
g (fz)_ )‘[(2+>\)G_2fi]

Note that ¢ (0) = (d+v)/ (2 + A) = p. Furthermore, p¥ (f;) increases with f; (as 9u /0 fi > 0
at a = 0 and OuY /Of; increases with a). Therefore, u¥ > p, with a strict inequality if f; > 0.
In other words, capacity investments are higher under this alternative net neutrality regime than
under the net neutrality regime with no termination fee.

Finally, we replace for ,LLZU (f;) into the last first-order condition, (19), and solve for the optimal
fi- This FOC has four roots, but only one satisfies the second-order conditions. In the symmetric
equilibrium with the quadratic investment cost function, we finally obtain that

v vtad+A)—2ya2v—dr+2a(2+N))
o= A

The following figure compares the equilibrium capacity investments for quadratic investment

costs under net neutrality (%), discrimination (4”) and uniform pricing (1Y), as a function of A,

for the following parameter values: a = 1,t =1, v = 3, d = 1. As one can see, capacity investment

under uniform pricing is always (at least weakly) higher compared to the net neutrality regime.

However, it can be either higher (for low or high values of \) or lower (for intermediate values of
A) than capacity investment under discrimination.

N ey gl

uV: thick black line, u”: red dashed line, uV: blue solid line
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