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Optimal Short-Run Durability

The main area of interest in durability models in the short-run is the conditions under
which the firm'’s durability path is declining over time. For example, White [1971] argues
that US automobile manufactures tended to decrease the durability of their products since
the 1940’s. Using a monopoly model Muller and Peles [1990] show that this can occur for
specific forms of the manufacturer’s cost function. Equations (7) and (8) indicate that in
oligopolistic industries the durability time path aso depends critically upon taxation. As
the tax/emissions structure is changed it aters each firm’ s total cost function
(manufacturing plus tax costs). Consequently, the tax/emission structure influences the
firm’s margina cost and the evolution of durability over time. If, for example, an excise

tax is placed on the industry [i.e. &(d, q) = q], then (8) in the text simplifies to

¥

(89 a8 f ds- tdW]{fInQ(s)] + FnQ()IQ(s)}e " Vds - c(d)g =0.
t

To make a definitive statement about the time path of durability we need to know the

behavior of the stock. It is standard (e.g., Muller and Peles [1990]) to assume that the

X
firm’s stock increases over time, so Q > 0. ' Then the following can be stated (e.g., Muller

and Peles [1990)):

X
PrROPOSITION: If the stock of each firm increases over time (Q > 0), then durability will

decrease over time (d < 0) with an excise tax.

1 A dot over the variables denotes the derivative with respect to time, e.g., (5( = dQ/dt.



Proof: For notational ease let R(t) = f[nQ(t)]+'[nQ(t)]Q(t). Implicitly differentiating (8)

with respect to time then gives:

D [N

where,

¥
z =fO0,d)JR(t) - B{rf {s-t,d(t)] - fqrs[s-t,d(t)]}R(s)e s,
t

and,

¥
a = BR(S)f afs-t,d(t)]e ™ %s - cakd(t)).
t

If the equilibria are stable then a will have the same sign as the second-direct partial of
the Hamiltonian with respect to durability Hqq, implying that a < O (see the discussion in
section 3 footnote 14 concerning the relationship between second-order conditions and

stability). Thusthe sign of a isdetermined by the signof z .

Note that in most casesf ([0, d(t)] = 0 since durability does not impact the survival or
decay process at the current instant even at the margin. For example, if we suppose that
the product is subject to exponentia decay it indicates f [t- s,di(S)] = exp[- (t- s)/di(s)].
Thusf 40, d(t)] = 0, implying the first term in z vanishes. Muller and Peles (1990) use this

functional form to further demonstrate that z is positive as long as the stock of output

X
produced by a monopolist isincreasing overtime (Q > 0). Their proof holdsin our
oligopoly model as well, implying that if the stock of industry output increases ast

increases then z > 0. Thus exponential product decay and e; = 0 (emissions are due to



output rather than durability) are sufficient to ensure d < 0 so the oligopolist’s durability

will decrease over time. -

The intuition behind this result is that the oligopolist’s durability decreases over time

(d < 0) since the revenue attributable to a unit of durability decreases over time. In other
words, the value of a unit of durability decreases over time with no corresponding shift in
the firm’s manufacturing and tax costs at the margin, so with this type of tax structure
durability tends to decline as White (1971) found for US automobile manufacturers. This
decline in durability would still occur if emissions taxes were levied as long as the
emissions of the firm are due to quantity rather than durability (i.e., s = 0). Thus, the

existence of an excise tax, or an emissions tax with certain specific forms of the emissions

function, indicates d < 0 is still possible. This can occur regardless of the number of firms
in the industry, suggesting the observed pattern of quality decline found in some durable
goods industries (such as the US automobile industry from the nineteen forties through the

nineteen sixties) may be, at least in part, related to the type of tax structure in existence.



Appendix A: Derivation of Equations (11) and (12).
In the steady-state, profitsto firm i given n firms are in the industry and that the tax

rate on emissions equals w are:

(A.D) p'(dj.ainw) = f(a Q) Qj - c(d) dj - e(dj.qpw,
=1

where,

(A.2) Qi ° r (dj) gj, i=1,..,n,

isthe steady state stock level of the durable good for firm i for derivative purposes (see

Sieper and Swan (1973) and footnote 15 in the text). The profit maximizing levels of d;

and gj (and Q) are given as the solution to the set of first-order conditions (9) and (10).

These equations can be rewritten as the first-order conditions to maximizing (A.1),

recognizing that the steady-state stock Q depends upon both production gj and durability
dj through (A.2). Thus, (9) and (10) may be rewritten as (letting py denote the partial
derivative of p with respect to x, for x = gj, dj, n, and w):

. n no ] .
(A3 plg; = [f(a Q) +F(a Q)QiI(TQi/Tai) - ofd) - eg;(dj,gpw = 0
=1 =1

: n n_oo_ . ..
(A4) plg; = [f(a Q) +f(a QQI(TQi/Tdi) - c'(djaj - eg(di,qpw = O.
=1 =1



Given (A.2), 1Qi/1d; = r '(d)q and 1Qj/Td; = r (d;), and given the assumption of

n
identical firmsand & Qj =nQ with a symmetric equilibrium, these equations may be
=1

rewritten as.
(A.3) pgq = [f(nQ) +F(nQ)QIr (d) - c(d) - ey(d.gw = O,
(A.4) pd = [f(nQ) +(nQ)QIr'(d)g - c'(d)g - egd.q)w = O,

If the firms are identical, then the first- and second-order conditions are symmetric.

Thus the elements of the Jacobian matrix may be rewritten as:*®

(A.5) P = [(+DF(NQ) + Qnf"(NQ)I[r ()] - ewg(@ )W,

(A.6) P = [(M+D)F(nQ) + Qnf'(nQ)]r (d)r '(d)g + [f(nQ) + QF (nQ)]r (d) ,
- ¢(d) - g (daw

(A7) Py = [(N+DF(nQ) + Qnf"(nQ)][r @12 + [f(nQ) + QF (MQ)Ir "(@)q ,
- ¢"(d)g - egg(d.a)w.

Furthermore, the derivatives with respect to the arguments n and w are:

(A.8) Pqw = -eq(@ia),

[f'(nQ) +f"(nQ)QIQr (d),

(A.9) Pgn
(A.10) Pdw = - ed(d.q),

[f'(nQ) + " (nQ)QIQr ‘(d)a.

(A.11) Pdn



As the maximizing levels of dj and g are given as the solution to (A.3") and (A.4),

(A.5) through (A.11) can be used to determine the effects of changesin either w, the
emissions tax, or n, the number of firmsin the industry on these equilibrium choices.

In matrix notation the total differentials of the system (A.3") and (A.4') may be written

aPqq p%@ﬁ? $qw0 qno
(A.12) c L= go n
Pdd Pdddf, eOdWﬂ g

where pjj i = q,d,j=q, d,n,w, are defined by (A.5) through (A.11). Let the Jacobian

matrix be denoted as J. It is assumed that the determinant of J is positive.

The remainder of the analysisinvolves using Cramer's rule to obtain the necessary

derivatives. The derivatives of d with respect to n and w are:*

1d 3qq - paxo
(A.13) o= Detgojq b S01= (ooxpaq - PagPad/l x=n,w,

where Det[A] and |A| both mean the determinant of A for any square matrix A.

Consider the derivation of 1d (equatlon 11 in the text). From (A.13), and dropping the

arguments of each function,

1d
an = (PanPdg - PagPdn)/Hl

= Q[f + Of'|{[(n+1)f + nOF'](r2r'q - r2rq) + (Of +f)r'r

- 1C'- reggw + r'geggw} /M|



Q[f' + Qf'1[(c' +egw/q)r - rc' - r edqW + qr ‘egql/NI

(A.14) WQIF + QF1[ar‘eqq + 1 (egfd - edg)l/Wl,

where the second equality substitutes in the pj j terms, the third equality cancels redundant

terms and uses pg = 0 from (A.4) to eliminate the (Qf' + f)r ' term. It can be seen that

(A.14) equals equation (11) from the text.
Next, consider the derivation of the change in the optimal durability level with respect

to a change in the emissions tax w (equation (12) in the text). From (A.13),

18 = (Pqwpaq - PggPaw/MI
= (e [(M+Df +nQf"Ir2 - eqqw} - eg{[(M+1)f +Qf*Irr g
+(Qf +f)r'- ¢’ - egqw})/V|

= {r[(n+Df + nQf"](egr - eqr'q) - egegqw - (Qf +fr'ey

+eqC" + egeggWIH M|

= {r[(n+D)f +nQf)(egr - &g ) - edegqW - (€' +egwa)eg

+ g’ + egegg} /|
(A.15) = {r [(+D)f + nQf](egr - eqr'a) - [(eqed)/a + edegq - Sqedglw} /M.
where the second equality substitutes in for the pj j terms, the third equality collects terms,

the fourth uses py = O to substitute out the (Qf' +f) term, and the find equdlity cancels the

C'eq terms. Equation (12) from the text equals (A.15).



Appendix B: Derivation of Equations (16) and (17).

The socia planner's problem involves maximizing (15), which may be re-written as:

n -
a Qjw)
/1 n ] n
(B1) V(w) =  §f(g)dg - & c[djw)]aj(w) - & e[dj(w),gj(w)].
0 =1 j=1

The value of w which maximizes (B.1) must satisfy (dropping the arguments from the

functions):
n 0 &FQif; ‘HQ‘Hd— n& 1o a2
J J 1" o i N
(8.2 V(w) = f(le’) S T ing:(d,) (@)
o

n
_ algedjﬂw * Sy ~ O

When firms are identical and symmetry isimposed (B.2) may be rewritten as,

W = 1008 @l @il . Bl caald
VW) = (0QF @, + 1 @Dgyz - @, +c@ag,=
€M, 1o
- it
(8.3) = FoQr @ - @ - eqy 19| Fnd)r @a - c@ - ed%’}d =0

which verifies equation (16) in the text. To obtain equation (17), note that individual firms

choose g and d to maximize (A.1), which meansthat g and d must jointly solve (A.3") and

(A.4) (equations (9) and (10) in the text). Since (A.3) and (A.4) are identities, the



equalities hold for al values of w, including, of course, the value of w which maximizes

d

(B.1). Thus one may subtract pq° O from the term involving ‘ﬂ_w in (B.3) and Pq ° 0from

the term involving ‘I.qW' Thus,

f(nQ)r (@ - c(@) - eq
= f(nQ)r (@) - c(@ - &g - {[FQQ +HQ)]r (@) - c(@) - eqw}
(B.4) = gyw-1) - FMQ)r (@D,
and,

f(nQ)r'(d)a - c'(d)g - eg = f(Q)r'(d)a - c'(d)a - eg
- {[F(nQ)Q +f(Q)Ir'(d)g - c'(d)q - eqw}
(B.5) = eg(w-1) - F(nQ)r (d)aQ.

Substituting (B.4) and (B.5) into (B.3) yields,

(B.6) [eg(w-1)- f'(nQ)r(a)Q]%T—\f{f[ed(W-l) - f'(”Q)f'(a)dQ]:]]_vdv =0

Solving (B.6) for w yields,

feq + FQ)r @y +[eg + FOO)r @aQgy,

(B.7) W - -
hlle] 1d
Cqw " o

which equals (17) in the text.



