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Optimal Short-Run Durability

The main area of interest in durability models in the short-run is the conditions under

which the firm’s durability path is declining over time. For example, White [1971] argues

that US automobile manufactures tended to decrease the durability of their products since

the 1940’s. Using a monopoly model Muller and Peles [1990] show that this can occur for

specific forms of the manufacturer’s cost function. Equations (7) and (8) indicate that in

oligopolistic industries the durability time path also depends critically upon taxation. As

the tax/emissions structure is changed it alters each firm’s total cost function

(manufacturing plus tax costs). Consequently, the tax/emission structure influences the

firm’s marginal cost and the evolution of durability over time. If, for example, an excise

tax is placed on the industry [i.e. ε(δ, q) = q], then (8) in the text simplifies to

(8′) q⌡⌠
t

∞
φδ[s−t,δ(t)]{f[nQ(s)] + f′[nQ(s)]Q(s)}e−r(s−t)ds  − c'(δ)q   = 0.

To make a definitive statement about the time path of durability we need to know the

behavior of the stock. It is standard (e.g., Muller and Peles [1990]) to assume that the

firm’s stock increases over time, so Q
⋅
 > 0.

 1
  Then the following can be stated (e.g., Muller

and Peles [1990]):

PROPOSITION:  If the stock of each firm increases over time (Q
⋅
 > 0), then durability will

decrease over time (δ
.
 < 0) with an excise tax.

                                                       

1 A dot over the variables denotes the derivative with respect to time, e.g., Q
⋅

 = dQ/dt.



Proof: For notational ease let R(t) = f[nQ(t)]+f'[nQ(t)]Q(t). Implicitly differentiating (8')

with respect to time then gives:

δ
.
 =  

ζ
α  ,

where,

  ζ = φδ[0,δ(t)]R(t) − ⌡⌠
t

∞
{rφδ[s−t,δ(t)] − φδ,t-s[s−t,δ(t)]}R(s)e−r(s−t)ds,

and,

α   =  ⌡⌠
t

∞
R(s)φδδ[s−t,δ(t)]e−r(s−t)ds − c′′(δ(t)).

If the equilibria are stable then α will have the same sign as the second-direct partial of

the Hamiltonian with respect to durability Hδδ, implying that α  < 0 (see the discussion in

section 3  footnote 14 concerning the relationship between second-order conditions and

stability). Thus the sign of α  is determined by the sign of ζ .

Note that in most cases φδ[0, δ(t)] = 0 since durability does not impact the survival or

decay process at the current instant even at the margin. For example, if we suppose that

the product is subject to exponential decay it indicates φ[t−s,δi(s)] = exp[−(t−s)/δi(s)].

Thus φδ[0, δ(t)] = 0, implying the first term in ζ vanishes. Muller and Peles (1990) use this

functional form to further demonstrate that ζ is positive as long as the stock of output

produced by a monopolist is increasing overtime (Q
⋅
 > 0). Their proof holds in our

oligopoly model as well, implying that if the stock of   industry output increases as t

increases then ζ  > 0. Thus exponential product decay and εδ = 0 (emissions are due to



output rather than durability) are sufficient to ensure δ
.
 < 0 so the oligopolist’s durability

will decrease over time. •

The intuition behind this result is that the oligopolist’s durability decreases over time

(δ
.
 < 0) since the revenue attributable to a unit of durability decreases over time. In other

words, the value of a unit of durability decreases over time with no corresponding shift in

the firm’s manufacturing and tax costs at the margin, so with this type of tax structure

durability tends to decline as White (1971) found for US automobile manufacturers.  This

decline in durability would still occur if emissions taxes were levied as long as the

emissions of the firm are due to quantity rather than durability (i.e., εδ  = 0). Thus, the

existence of an excise tax, or an emissions tax with certain specific forms of the emissions

function, indicates δ
.
 < 0 is still possible. This can occur regardless of the number of firms

in the industry, suggesting the observed pattern of quality decline found in some durable

goods industries (such as the US automobile industry from the nineteen forties through the

nineteen sixties) may be, at least in part, related to the type of tax structure in existence.



Appendix A:  Derivation of Equations (11) and (12).

In the steady-state, profits to firm i given n firms are in the industry and that the tax

rate on emissions equals w are:

(Α.1) πi(δ−i,q
−

i;n,w)   =   f( ∑
j=1

n
 Q
−

j) Q
−

i  −  c(δ−i) q
−

i  −  ε(δ−i,q
−

i)w,

where,

(A.2) Q
−

i ≡ ρ(δ−i) q
−

i, i = 1,...,n,

is the steady state stock level of the durable good for firm i for derivative purposes (see

Sieper and Swan (1973) and footnote 15 in the text). The profit maximizing levels of δ−i

and q
−

i (and Q
−

) are given as the solution to the set of first-order conditions (9) and (10).

These equations can be rewritten as the first-order conditions to maximizing (A.1),

recognizing that the steady-state stock Q
−

 depends upon both production q
−

i and durability

δ−i through (A.2). Thus, (9) and (10) may be rewritten as (letting πx denote the partial

derivative of π with respect to x, for x = q
−

i, δ
−

i, n, and w):

(A.3) πiqi  =  [f( ∑
j=1

n
 Q
−

j) + f'( ∑
j=1

n
 Q
−

j)Q
−

i](∂Q
−

i/∂q
−

i)  −  c(δ−i)  −  εqi(δ
−

i,q
−

i)w   =   0

(A.4) πiδi  =  [f( ∑
j=1

n
 Q
−

j) + f'( ∑
j=1

n
 Q
−

j)Q
−

i](∂Q
−

i/∂δ−i)  −  c'(δ−i)q
−

i  −  εδi(δ
−

i,q
−

i)w   =   0.



Given (A.2), ∂Q
−

i/∂δ−i = ρ'(δ−)q
−

 and ∂Q
−

i/∂q
−

i = ρ(δ−i), and given the assumption of

identical firms and ∑
j=1

n
 Q
−

j = nQ
−

 with a symmetric equilibrium, these equations may be

rewritten as:

(A.3') πq  =  [f(nQ
−

) + f'(nQ
−

)Q
−

]ρ(δ−)  −  c(δ−)  −  εq(δ−,q
−

)w   =   0,

(A.4') πδ  =  [f(nQ
−

) + f'(nQ
−

)Q
−

]ρ'(δ−)q
−

  −  c'(δ−)q
−

  −  εδ(δ−,q
−

)w   =   0,

If the firms are identical, then the first- and second-order conditions are symmetric.

Thus the elements of the Jacobian matrix may be rewritten as:28

(A.5) πqq   =  [(n+1)f'(nQ
−

) + Q
−

nf''(nQ
−

)][ρ(δ−)]2 − εqq(δ
−

,q
−

)w,

(A.6) π
qδ

   =  [(n+1)f'(nQ
−

) + Q
−

nf''(nQ
−

)]ρ(δ−)ρ'(δ−)q
−

 + [f(nQ
−

) + Q
−

f'(nQ
−

)]ρ'(δ−) ,

− c'(δ−) − ε
qδ(δ

−
,q
−

)w

(A.7) π
δδ

   =  [(n+1)f'(nQ
−

) + Q
−

nf''(nQ
−

)][ρ'(δ−)q
−

]2 + [f(nQ
−

) + Q
−

f'(nQ
−

)]ρ''(δ−)q
−

 ,

− c''(δ−)q
−

 − εδδ(δ−,q
−

)w.

Furthermore, the derivatives with respect to the arguments n and w are:

(A.8) πqw   =  −εq(δ−,q
−

),

(A.9) πqn   =  [f'(nQ
−

) + f''(nQ
−

)Q
−

]Q
−ρ(δ−),

(A.10) πδw  =  −εδ(δ−,q
−

),

(A.11) πδn   =  [f'(nQ
−

) + f''(nQ
−

)Q
−

]Q
−ρ'(δ−)q

−
.



As the maximizing levels of δ−i and q
−

i are given as the solution to (A.3') and (A.4),

(A.5) through (A.11) can be used to determine the effects of changes in either w, the

emissions tax, or n, the number of firms in the industry on these equilibrium choices.

In matrix notation the total differentials of the system (A.3') and (A.4') may be written

as:

(A.12)






πqq

πδq
 
πqδ
πδδ 








dq

−

dδ−
   =   − 







πqw

πδw
dw   − 







πqn

πδn dn.

where πij i = q
−

, δ−, j = q
−

, δ−, n, w, are defined by (A.5) through (A.11). Let the Jacobian

matrix be denoted as J. It is assumed that the determinant of J is positive.

The remainder of the analysis involves using Cramer's rule to obtain the necessary

derivatives.  The derivatives of δ− with respect to n and w are:29

(A.13) 
∂δ−

∂x
  =   Det







πqq

πδq
  

−πqx
−πδx

/|J| =  (πqxπδq − πqqπδx)/|J|,    x = n, w,

where Det[A] and |A| both mean the determinant of A for any square matrix A.

Consider the derivation of 
∂δ−

∂n
 (equation 11 in the text). From (A.13), and dropping the

arguments of each function,

∂δ−

∂n
  =  (πqnπδq − πqqπδn)/|J|

=  Q
−

[f' + Q
−

f"]{[(n+1)f' + nQ
−

f"](ρ2ρ'q
−

 − ρ2ρ'q
−

) + (Q
−

f' + f)ρ'ρ

− ρc' − ρεδqw + ρ'q
−εqqw}/|J|



=  Q
−

[f' + Q
−

f"][(c' + eδw/q
−

)ρ − ρc' − ρεδqw + q
−ρ'εqqw]/|J|

(A.14) =  wQ
−

[f' + Q
−

f"][q
−ρ'εqq  + ρ(εδ/q

−
 − εδq)]/|J|,

where the second equality substitutes in the πij terms, the third equality cancels redundant

terms and uses πδ = 0 from (A.4) to eliminate the (Q
−

f' + f)ρ' term. It can be seen that

(A.14) equals equation (11) from the text.

Next, consider the derivation of the change in the optimal durability level with respect

to a change in the emissions tax w (equation (12) in the text). From (A.13),

∂δ−

∂w
  =  (πqwπδq − πqqπδw)/|J|

=  (εδ{[(n+1)f' + nQ
−

f"]ρ2  − εqqw}  −  εq{[(n+1)f' + Q
−

f"]ρρ'q
−

+ (Q
−

f' + f)ρ' − c' − εδqw})/|J|

=  {ρ[(n+1)f' + nQ
−

f"](εδρ − εqρ'q
−

) − εδεqqw  −  (Q
−

f' + f)ρ'εq

+ εqc' + εqεδqw]}/|J|

=  {ρ[(n+1)f' + nQ
−

f"](εδρ − εqρ'q
−

) − εδεqqw  −  (c' + εδw/q
−

)εq

+ εqc' + εqεδqw}/|J|

(A.15) =  {ρ[(n+1)f' + nQ
−

f"](εδρ − εqρ'q
−

) − [(εqεδ)/q
−

  +  εδεqq  −  εqεδq]w}/|J|,

where the second equality substitutes in for the πij terms, the third equality collects terms,

the fourth uses πδ = 0 to substitute out the (Q
−

f' + f) term, and the final equality cancels the

c'εq terms. Equation (12) from the text equals (A.15).



Appendix B:  Derivation of Equations (16) and (17).

The social planner's problem involves maximizing (15), which may be re-written as:

(B.1) V(w)  =  ⌡⌠
0

 ∑
j=1

n
 Q
−

j(w)

 f(g)dg  −  ∑
j=1

n
  c[δ−j(w)]q

−
j(w)  −  ∑

j=1

n
  ε[δ−j(w),q

−
j(w)].

The value of w which maximizes (B.1) must satisfy (dropping the arguments from the

functions):

(B.2) V'(w)  =  f( ∑
j=1

n
 Q
−

j) ∑
j=1

n
 








∂Q

−
j

∂qj

∂q
−

j
∂w

 + 
∂Q

−
j

∂δj

∂δ−j
∂w

 − ∑
j=1

n
 










c(δ−j)
∂q
−

j
∂w

 − c'(δ−j)q
−

j
∂δ−j
∂w

− ∑
j=1

n
 










εδj

∂δ−j
∂w

  +  εqj

∂q
−

j
∂w

   = 0.

When firms are identical and symmetry is imposed (B.2) may be rewritten as,

V'(w)  =   f(nQ
−

)






ρ(δ−)
∂q
−

∂w
 + ρ'(δ−)q

−∂δ−

∂w
  −  







c(δ−)
∂q
−

∂w
 + c'(δ−)q

−∂δ−

∂w

−  






εq
∂q
−

∂w
 + εδ

∂δ−

∂w

(B.3) =   



f(nQ

−
)ρ(δ−) − c(δ−) − εq

∂q
−

∂w
 + 



f(nQ

−
)ρ'(δ−)q

−
  −  c'(δ−) − εδ

∂δ−

∂w
   =  0,

which verifies equation (16) in the text. To obtain equation (17), note that individual firms

choose q
−

 and δ− to maximize (A.1), which means that q
−

 and δ− must jointly solve (A.3') and

(A.4') (equations (9) and (10) in the text). Since (A.3') and (A.4') are identities, the



equalities hold for all values of w, including, of course, the value of w which maximizes

(B.1). Thus one may subtract πδ ≡ 0 from the term involving 
∂δ−

∂w
 in (B.3) and πq ≡ 0 from

the term involving 
∂q
−

∂w
. Thus,

f(nQ
−

)ρ(δ−) − c(δ−) − εq

=  f(nQ
−

)ρ(δ−) − c(δ−) − εq  −  {[f'(nQ
−

)Q
−

 + f(nQ
−

)]ρ(δ−) − c(δ−) − εqw}

(B.4) =  εq(w −1) − f'(nQ
−

)ρ(δ−)Q
−

,

and,

f(nQ
−

)ρ'(δ−)q
−

 − c'(δ−)q
−

 − εδ   =  f(nQ
−

)ρ'(δ−)q
−

 − c'(δ−)q
−

 − εδ

− {[f'(nQ
−

)Q
−

  + f(nQ
−

)]ρ'(δ−)q
−

 − c'(δ−)q
−

 − εδw}

(B.5) =  εδ(w −1) − f'(nQ
−

)ρ(δ−)q
−

Q
−

.

Substituting (B.4) and (B.5) into (B.3) yields,

(B.6)    [εq(w −1) − f'(nQ
−

)ρ(δ−)Q
−

]
∂q
−

∂w
 + [εδ(w −1) − f'(nQ

−
)ρ'(δ−)q

−
Q
−

]
∂δ−

∂w
   =  0,

Solving (B.6) for w yields,

(B.7) w*   = 
[εq + f'(Q

−
)ρ(δ−)Q

−
]
∂q
−
q

∂w
  + [εδ + f'(nQ

−
)ρ'(δ−)q

−
Q
−

]
∂δ−

∂w
 

εq
∂q
−

∂w
  +  εδ

∂δ−

∂w

,

which equals (17) in the text.


